MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. ACI-ASTM CA6N Steel

7049 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
17
Fatigue Strength, MPa 160 to 170
640
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 510 to 530
1080
Tensile Strength: Yield (Proof), MPa 420 to 450
1060

Thermal Properties

Latent Heat of Fusion, J/g 370
280
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.5
Embodied Energy, MJ/kg 140
35
Embodied Water, L/kg 1110
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
2900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
38
Strength to Weight: Bending, points 46 to 47
30
Thermal Diffusivity, mm2/s 51
6.1
Thermal Shock Resistance, points 22 to 23
40

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.1 to 0.22
10.5 to 12.5
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
77.9 to 83.5
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0