MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. ASTM A369 Grade FP9

7049 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
20
Fatigue Strength, MPa 160 to 170
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 300 to 310
300
Tensile Strength: Ultimate (UTS), MPa 510 to 530
470
Tensile Strength: Yield (Proof), MPa 420 to 450
240

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1110
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
80
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
17
Strength to Weight: Bending, points 46 to 47
17
Thermal Diffusivity, mm2/s 51
6.9
Thermal Shock Resistance, points 22 to 23
13

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 0.22
8.0 to 10
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
87.1 to 90.3
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0