MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. ASTM Grade LC9 Steel

7049 aluminum belongs to the aluminum alloys classification, while ASTM grade LC9 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is ASTM grade LC9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
200
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
22
Fatigue Strength, MPa 160 to 170
420
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 510 to 530
660
Tensile Strength: Yield (Proof), MPa 420 to 450
590

Thermal Properties

Latent Heat of Fusion, J/g 370
260
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.0
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.3
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1110
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 46 to 47
23
Strength to Weight: Bending, points 46 to 47
21
Thermal Shock Resistance, points 22 to 23
20

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0.1 to 0.22
0 to 0.5
Copper (Cu), % 1.2 to 1.9
0 to 0.3
Iron (Fe), % 0 to 0.35
87.4 to 91.5
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.9
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
8.5 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.45
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0