MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.3940 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while EN 1.3940 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.3940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
34
Fatigue Strength, MPa 160 to 170
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 510 to 530
540
Tensile Strength: Yield (Proof), MPa 420 to 450
240

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 180
930
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
17
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.3
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
19
Strength to Weight: Bending, points 46 to 47
19
Thermal Diffusivity, mm2/s 51
4.1
Thermal Shock Resistance, points 22 to 23
16

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.22
16.5 to 18.5
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
64.2 to 71.4
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Nickel (Ni), % 0
12 to 14
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0