MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.3963 Alloy

7049 aluminum belongs to the aluminum alloys classification, while EN 1.3963 alloy belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
29
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 27
72
Shear Strength, MPa 300 to 310
290
Tensile Strength: Ultimate (UTS), MPa 510 to 530
440
Tensile Strength: Yield (Proof), MPa 420 to 450
310

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 860
460
Thermal Expansion, µm/m-K 23
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.1
4.8
Embodied Energy, MJ/kg 140
66
Embodied Water, L/kg 1110
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 46 to 47
15
Strength to Weight: Bending, points 46 to 47
16
Thermal Shock Resistance, points 22 to 23
110

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.1 to 0.22
0 to 0.25
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
60.5 to 64.9
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0.1 to 0.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0