MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.4477 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
270
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.2 to 7.0
22 to 23
Fatigue Strength, MPa 160 to 170
420 to 490
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 300 to 310
550 to 580
Tensile Strength: Ultimate (UTS), MPa 510 to 530
880 to 930
Tensile Strength: Yield (Proof), MPa 420 to 450
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.1
3.7
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1110
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
940 to 1290
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
31 to 33
Strength to Weight: Bending, points 46 to 47
26 to 27
Thermal Diffusivity, mm2/s 51
3.5
Thermal Shock Resistance, points 22 to 23
23 to 25

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.22
28 to 30
Copper (Cu), % 1.2 to 1.9
0 to 0.8
Iron (Fe), % 0 to 0.35
56.6 to 63.6
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0