MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.4662 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
28
Fatigue Strength, MPa 160 to 170
430 to 450
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 300 to 310
520 to 540
Tensile Strength: Ultimate (UTS), MPa 510 to 530
810 to 830
Tensile Strength: Yield (Proof), MPa 420 to 450
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.1
3.2
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 1110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
840 to 940
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
29 to 30
Strength to Weight: Bending, points 46 to 47
25
Thermal Diffusivity, mm2/s 51
3.9
Thermal Shock Resistance, points 22 to 23
22

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.22
23 to 25
Copper (Cu), % 1.2 to 1.9
0.1 to 0.8
Iron (Fe), % 0 to 0.35
62.6 to 70.2
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0