MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. EN 1.7375 Steel

7049 aluminum belongs to the aluminum alloys classification, while EN 1.7375 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is EN 1.7375 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.2 to 7.0
20
Fatigue Strength, MPa 160 to 170
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 300 to 310
380
Tensile Strength: Ultimate (UTS), MPa 510 to 530
620
Tensile Strength: Yield (Proof), MPa 420 to 450
400

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 480
1430
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.9
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1110
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
420
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 46 to 47
22
Strength to Weight: Bending, points 46 to 47
20
Thermal Diffusivity, mm2/s 51
11
Thermal Shock Resistance, points 22 to 23
18

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0.010 to 0.040
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0.1 to 0.22
2.0 to 2.5
Copper (Cu), % 1.2 to 1.9
0 to 0.25
Iron (Fe), % 0 to 0.35
94.5 to 96.7
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0