MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. Nickel 30

7049 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 6.2 to 7.0
34
Fatigue Strength, MPa 160 to 170
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
82
Shear Strength, MPa 300 to 310
440
Tensile Strength: Ultimate (UTS), MPa 510 to 530
660
Tensile Strength: Yield (Proof), MPa 420 to 450
270

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 180
1020
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 480
1430
Specific Heat Capacity, J/kg-K 860
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.1
9.4
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1110
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 46 to 47
22
Strength to Weight: Bending, points 46 to 47
20
Thermal Diffusivity, mm2/s 51
2.7
Thermal Shock Resistance, points 22 to 23
18

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.1 to 0.22
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 1.2 to 1.9
1.0 to 2.4
Iron (Fe), % 0 to 0.35
13 to 17
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0