MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. C96400 Copper-nickel

7049 aluminum belongs to the aluminum alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 6.2 to 7.0
25
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
51
Tensile Strength: Ultimate (UTS), MPa 510 to 530
490
Tensile Strength: Yield (Proof), MPa 420 to 450
260

Thermal Properties

Latent Heat of Fusion, J/g 370
240
Maximum Temperature: Mechanical, °C 180
260
Melting Completion (Liquidus), °C 640
1240
Melting Onset (Solidus), °C 480
1170
Specific Heat Capacity, J/kg-K 860
400
Thermal Conductivity, W/m-K 130
28
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 8.1
5.9
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 1110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 46 to 47
15
Strength to Weight: Bending, points 46 to 47
16
Thermal Diffusivity, mm2/s 51
7.8
Thermal Shock Resistance, points 22 to 23
17

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.1 to 0.22
0
Copper (Cu), % 1.2 to 1.9
62.3 to 71.3
Iron (Fe), % 0 to 0.35
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.5
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0
0 to 0.5