MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. C96700 Copper

7049 aluminum belongs to the aluminum alloys classification, while C96700 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 6.2 to 7.0
10
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
53
Tensile Strength: Ultimate (UTS), MPa 510 to 530
1210
Tensile Strength: Yield (Proof), MPa 420 to 450
550

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 640
1170
Melting Onset (Solidus), °C 480
1110
Specific Heat Capacity, J/kg-K 860
400
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
90
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.1
9.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1110
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
99
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
1080
Stiffness to Weight: Axial, points 13
8.9
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 46 to 47
38
Strength to Weight: Bending, points 46 to 47
29
Thermal Diffusivity, mm2/s 51
8.5
Thermal Shock Resistance, points 22 to 23
40

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Beryllium (Be), % 0
1.1 to 1.2
Chromium (Cr), % 0.1 to 0.22
0
Copper (Cu), % 1.2 to 1.9
62.4 to 68.8
Iron (Fe), % 0 to 0.35
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0.4 to 1.0
Nickel (Ni), % 0
29 to 33
Silicon (Si), % 0 to 0.25
0 to 0.15
Titanium (Ti), % 0 to 0.1
0.15 to 0.35
Zinc (Zn), % 7.2 to 8.2
0
Zirconium (Zr), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.5