MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. S17700 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
180 to 430
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
1.0 to 23
Fatigue Strength, MPa 160 to 170
290 to 560
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 300 to 310
740 to 940
Tensile Strength: Ultimate (UTS), MPa 510 to 530
1180 to 1650
Tensile Strength: Yield (Proof), MPa 420 to 450
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 180
890
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
460 to 3750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
42 to 59
Strength to Weight: Bending, points 46 to 47
32 to 40
Thermal Diffusivity, mm2/s 51
4.1
Thermal Shock Resistance, points 22 to 23
39 to 54

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0.1 to 0.22
16 to 18
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
70.5 to 76.8
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0