MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. S24000 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
39
Fatigue Strength, MPa 160 to 170
370
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 300 to 310
530
Tensile Strength: Ultimate (UTS), MPa 510 to 530
770
Tensile Strength: Yield (Proof), MPa 420 to 450
430

Thermal Properties

Latent Heat of Fusion, J/g 370
280
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 480
1350
Specific Heat Capacity, J/kg-K 860
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.1
7.6
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
260
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
28
Strength to Weight: Bending, points 46 to 47
24
Thermal Shock Resistance, points 22 to 23
16

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.1 to 0.22
17 to 19
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
61.5 to 69
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0