MakeItFrom.com
Menu (ESC)

7049 Aluminum vs. S35000 Stainless Steel

7049 aluminum belongs to the aluminum alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049 aluminum and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.2 to 7.0
2.3 to 14
Fatigue Strength, MPa 160 to 170
380 to 520
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 300 to 310
740 to 950
Tensile Strength: Ultimate (UTS), MPa 510 to 530
1300 to 1570
Tensile Strength: Yield (Proof), MPa 420 to 450
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 370
280
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.2
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 34
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1270 to 1440
1070 to 3360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 46 to 47
46 to 56
Strength to Weight: Bending, points 46 to 47
34 to 38
Thermal Diffusivity, mm2/s 51
4.4
Thermal Shock Resistance, points 22 to 23
42 to 51

Alloy Composition

Aluminum (Al), % 85.7 to 89.5
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0.1 to 0.22
16 to 17
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.35
72.7 to 76.9
Magnesium (Mg), % 2.0 to 2.9
0
Manganese (Mn), % 0 to 0.2
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 7.2 to 8.2
0
Residuals, % 0 to 0.15
0

Comparable Variants