MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. ACI-ASTM CB7Cu-1 Steel

7049A aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.0 to 5.7
5.7 to 11
Fatigue Strength, MPa 180
420 to 590
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 580 to 590
960 to 1350
Tensile Strength: Yield (Proof), MPa 500 to 530
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 370
280
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 430
1500
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1100
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
1500 to 3590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 52 to 53
34 to 48
Strength to Weight: Bending, points 50 to 51
28 to 35
Thermal Diffusivity, mm2/s 50
4.6
Thermal Shock Resistance, points 25
32 to 45

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.050 to 0.25
15.5 to 17.7
Copper (Cu), % 1.2 to 1.9
2.5 to 3.2
Iron (Fe), % 0 to 0.5
72.3 to 78.4
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.7
Nickel (Ni), % 0
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0