MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN 1.0303 Steel

7049A aluminum belongs to the aluminum alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.0 to 5.7
12 to 25
Fatigue Strength, MPa 180
150 to 230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 340 to 350
220 to 260
Tensile Strength: Ultimate (UTS), MPa 580 to 590
290 to 410
Tensile Strength: Yield (Proof), MPa 500 to 530
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 430
1430
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1100
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
110 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 52 to 53
10 to 15
Strength to Weight: Bending, points 50 to 51
12 to 16
Thermal Diffusivity, mm2/s 50
14
Thermal Shock Resistance, points 25
9.2 to 13

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0.020 to 0.060
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.5
99.335 to 99.71
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0.25 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0