MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN 1.3505 Steel

7049A aluminum belongs to the aluminum alloys classification, while EN 1.3505 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN 1.3505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 580 to 590
600 to 690

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 430
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1100
52

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 52 to 53
22 to 25
Strength to Weight: Bending, points 50 to 51
20 to 22
Thermal Diffusivity, mm2/s 50
12
Thermal Shock Resistance, points 25
18 to 20

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0.050 to 0.25
1.4 to 1.6
Copper (Cu), % 1.2 to 1.9
0 to 0.3
Iron (Fe), % 0 to 0.5
97.1 to 98.3
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0.25 to 0.45
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0