MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN 1.4107 Stainless Steel

7049A aluminum belongs to the aluminum alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.0 to 5.7
18 to 21
Fatigue Strength, MPa 180
260 to 350
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 580 to 590
620 to 700
Tensile Strength: Yield (Proof), MPa 500 to 530
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 430
1410
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 130
27
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1100
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
420 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 52 to 53
22 to 25
Strength to Weight: Bending, points 50 to 51
21 to 22
Thermal Diffusivity, mm2/s 50
7.2
Thermal Shock Resistance, points 25
22 to 25

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.050 to 0.25
11.5 to 12.5
Copper (Cu), % 1.2 to 1.9
0 to 0.3
Iron (Fe), % 0 to 0.5
83.8 to 87.2
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants