MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN 1.7701 Steel

7049A aluminum belongs to the aluminum alloys classification, while EN 1.7701 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN 1.7701 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 580 to 590
670 to 2010

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 430
1420
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1100
52

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 52 to 53
24 to 71
Strength to Weight: Bending, points 50 to 51
22 to 45
Thermal Diffusivity, mm2/s 50
12
Thermal Shock Resistance, points 25
20 to 59

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0
Carbon (C), % 0
0.48 to 0.56
Chromium (Cr), % 0.050 to 0.25
0.9 to 1.2
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.5
96.2 to 97.7
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0.7 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0