MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN AC-43500 Aluminum

Both 7049A aluminum and EN AC-43500 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 5.0 to 5.7
4.5 to 13
Fatigue Strength, MPa 180
62 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 580 to 590
220 to 300
Tensile Strength: Yield (Proof), MPa 500 to 530
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 370
550
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 430
590
Specific Heat Capacity, J/kg-K 850
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
38
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 44
54
Strength to Weight: Axial, points 52 to 53
24 to 33
Strength to Weight: Bending, points 50 to 51
32 to 39
Thermal Diffusivity, mm2/s 50
60
Thermal Shock Resistance, points 25
10 to 14

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
86.4 to 90.5
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.25
Magnesium (Mg), % 2.1 to 3.1
0.1 to 0.6
Manganese (Mn), % 0 to 0.5
0.4 to 0.8
Silicon (Si), % 0 to 0.4
9.0 to 11.5
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 7.2 to 8.4
0 to 0.070
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15