MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. EN AC-46400 Aluminum

Both 7049A aluminum and EN AC-46400 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 5.0 to 5.7
1.1 to 1.7
Fatigue Strength, MPa 180
75 to 85
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 580 to 590
170 to 310
Tensile Strength: Yield (Proof), MPa 500 to 530
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 370
520
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 430
570
Specific Heat Capacity, J/kg-K 850
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
82 to 500
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
52
Strength to Weight: Axial, points 52 to 53
18 to 32
Strength to Weight: Bending, points 50 to 51
26 to 38
Thermal Diffusivity, mm2/s 50
55
Thermal Shock Resistance, points 25
7.8 to 14

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
85.4 to 90.5
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0.8 to 1.3
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 2.1 to 3.1
0.25 to 0.65
Manganese (Mn), % 0 to 0.5
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 7.2 to 8.4
0 to 0.8
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.25

Comparable Variants