MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. Grade CX2M Nickel

7049A aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 5.0 to 5.7
45
Fatigue Strength, MPa 180
260
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 580 to 590
550
Tensile Strength: Yield (Proof), MPa 500 to 530
310

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 430
1450
Specific Heat Capacity, J/kg-K 850
430
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.1
8.7
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 52 to 53
18
Strength to Weight: Bending, points 50 to 51
17
Thermal Diffusivity, mm2/s 50
2.7
Thermal Shock Resistance, points 25
15

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.050 to 0.25
22 to 24
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0