MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. C16200 Copper

7049A aluminum belongs to the aluminum alloys classification, while C16200 copper belongs to the copper alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 5.0 to 5.7
2.0 to 56
Fatigue Strength, MPa 180
100 to 210
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 27
43
Shear Strength, MPa 340 to 350
190 to 390
Tensile Strength: Ultimate (UTS), MPa 580 to 590
240 to 550
Tensile Strength: Yield (Proof), MPa 500 to 530
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 370
210
Maximum Temperature: Mechanical, °C 200
370
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 430
1030
Specific Heat Capacity, J/kg-K 850
380
Thermal Conductivity, W/m-K 130
360
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
90
Electrical Conductivity: Equal Weight (Specific), % IACS 120
90

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 3.1
9.0
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
10 to 970
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 44
18
Strength to Weight: Axial, points 52 to 53
7.4 to 17
Strength to Weight: Bending, points 50 to 51
9.6 to 17
Thermal Diffusivity, mm2/s 50
100
Thermal Shock Resistance, points 25
8.7 to 20

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0
Cadmium (Cd), % 0
0.7 to 1.2
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 1.2 to 1.9
98.6 to 99.3
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0