MakeItFrom.com
Menu (ESC)

7049A Aluminum vs. N06200 Nickel

7049A aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7049A aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 5.0 to 5.7
51
Fatigue Strength, MPa 180
290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
84
Shear Strength, MPa 340 to 350
560
Tensile Strength: Ultimate (UTS), MPa 580 to 590
780
Tensile Strength: Yield (Proof), MPa 500 to 530
320

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 430
1450
Specific Heat Capacity, J/kg-K 850
430
Thermal Conductivity, W/m-K 130
9.1
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.1
8.7
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 32
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1800 to 1990
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 52 to 53
25
Strength to Weight: Bending, points 50 to 51
22
Thermal Diffusivity, mm2/s 50
2.4
Thermal Shock Resistance, points 25
21

Alloy Composition

Aluminum (Al), % 84.6 to 89.5
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.050 to 0.25
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 1.2 to 1.9
1.3 to 1.9
Iron (Fe), % 0 to 0.5
0 to 3.0
Magnesium (Mg), % 2.1 to 3.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 7.2 to 8.4
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0