MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. ACI-ASTM CF3MN Steel

7050 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is ACI-ASTM CF3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2 to 12
39
Fatigue Strength, MPa 130 to 210
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 490 to 570
580
Tensile Strength: Yield (Proof), MPa 390 to 500
290

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 490
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1120
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 45 to 51
20
Strength to Weight: Bending, points 45 to 50
20
Thermal Diffusivity, mm2/s 54
4.1
Thermal Shock Resistance, points 21 to 25
13

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.040
17 to 22
Copper (Cu), % 2.0 to 2.6
0
Iron (Fe), % 0 to 0.15
58.7 to 71.9
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 13
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0