MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. ACI-ASTM CN7MS Steel

7050 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2 to 12
39
Fatigue Strength, MPa 130 to 210
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 490 to 570
540
Tensile Strength: Yield (Proof), MPa 390 to 500
230

Thermal Properties

Latent Heat of Fusion, J/g 370
340
Maximum Temperature: Mechanical, °C 190
1040
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 490
1350
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 45 to 51
19
Strength to Weight: Bending, points 45 to 50
19
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 21 to 25
13

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.040
18 to 20
Copper (Cu), % 2.0 to 2.6
1.5 to 2.0
Iron (Fe), % 0 to 0.15
45.4 to 53.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0