MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. AISI 384 Stainless Steel

7050 aluminum belongs to the aluminum alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 490 to 570
480

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 190
910
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 490
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1120
150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 45 to 51
17
Strength to Weight: Bending, points 45 to 50
17
Thermal Diffusivity, mm2/s 54
4.3
Thermal Shock Resistance, points 21 to 25
11

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.040
15 to 17
Copper (Cu), % 2.0 to 2.6
0
Iron (Fe), % 0 to 0.15
60.9 to 68
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0