MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. ASTM Grade LCB Steel

7050 aluminum belongs to the aluminum alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 12
27
Fatigue Strength, MPa 130 to 210
200
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 490 to 570
540
Tensile Strength: Yield (Proof), MPa 390 to 500
270

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1120
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 45 to 51
19
Strength to Weight: Bending, points 45 to 50
19
Thermal Diffusivity, mm2/s 54
14
Thermal Shock Resistance, points 21 to 25
17

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
0
Iron (Fe), % 0 to 0.15
97 to 100
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0
0 to 1.0