MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN 1.3555 Steel

7050 aluminum belongs to the aluminum alloys classification, while EN 1.3555 steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN 1.3555 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 490 to 570
770

Thermal Properties

Latent Heat of Fusion, J/g 370
260
Maximum Temperature: Mechanical, °C 190
540
Melting Completion (Liquidus), °C 630
1500
Melting Onset (Solidus), °C 490
1450
Specific Heat Capacity, J/kg-K 860
460
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
5.6
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1120
90

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 45 to 51
27
Strength to Weight: Bending, points 45 to 50
23
Thermal Shock Resistance, points 21 to 25
22

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.040
3.9 to 4.3
Copper (Cu), % 2.0 to 2.6
0 to 0.1
Iron (Fe), % 0 to 0.15
85.4 to 87.7
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.15 to 0.35
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 0
3.2 to 3.6
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.12
0.1 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.060
0
Tungsten (W), % 0
0 to 0.15
Vanadium (V), % 0
1.0 to 1.3
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0