MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN 1.4887 Stainless Steel

7050 aluminum belongs to the aluminum alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2 to 12
45
Fatigue Strength, MPa 130 to 210
280
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 280 to 330
400
Tensile Strength: Ultimate (UTS), MPa 490 to 570
580
Tensile Strength: Yield (Proof), MPa 390 to 500
300

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 490
1350
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.7
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1120
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 45 to 51
20
Strength to Weight: Bending, points 45 to 50
19
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 21 to 25
14

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.040
20 to 23
Copper (Cu), % 2.0 to 2.6
0
Iron (Fe), % 0 to 0.15
34.2 to 45
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0