MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN 1.7376 Steel

7050 aluminum belongs to the aluminum alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 12
20
Fatigue Strength, MPa 130 to 210
320
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 490 to 570
710
Tensile Strength: Yield (Proof), MPa 390 to 500
460

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 190
600
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 140
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1120
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 45 to 51
25
Strength to Weight: Bending, points 45 to 50
23
Thermal Diffusivity, mm2/s 54
6.9
Thermal Shock Resistance, points 21 to 25
20

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0 to 0.040
8.0 to 10
Copper (Cu), % 2.0 to 2.6
0 to 0.3
Iron (Fe), % 0 to 0.15
86.2 to 90.6
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0