MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN 2.4608 Nickel

7050 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.2 to 12
34
Fatigue Strength, MPa 130 to 210
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 280 to 330
410
Tensile Strength: Ultimate (UTS), MPa 490 to 570
620
Tensile Strength: Yield (Proof), MPa 390 to 500
270

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 860
460
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 45 to 51
20
Strength to Weight: Bending, points 45 to 50
19
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 21 to 25
16

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.040
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 2.0 to 2.6
0
Iron (Fe), % 0 to 0.15
11.4 to 23.8
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0