MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. EN 2.4668 Nickel

7050 aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2 to 12
14
Fatigue Strength, MPa 130 to 210
590
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 280 to 330
840
Tensile Strength: Ultimate (UTS), MPa 490 to 570
1390
Tensile Strength: Yield (Proof), MPa 390 to 500
1160

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 860
450
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1120
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
3490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 45 to 51
46
Strength to Weight: Bending, points 45 to 50
33
Thermal Diffusivity, mm2/s 54
3.5
Thermal Shock Resistance, points 21 to 25
40

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0 to 0.040
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 2.0 to 2.6
0 to 0.3
Iron (Fe), % 0 to 0.15
11.2 to 24.6
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.12
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0.6 to 1.2
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0