MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. CR023A Copper

7050 aluminum belongs to the aluminum alloys classification, while CR023A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is CR023A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 2.2 to 12
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 490 to 570
220
Tensile Strength: Yield (Proof), MPa 390 to 500
130

Thermal Properties

Latent Heat of Fusion, J/g 370
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 630
1090
Melting Onset (Solidus), °C 490
1040
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 140
380
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
100
Electrical Conductivity: Equal Weight (Specific), % IACS 100
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 3.1
9.0
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
29
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 45 to 51
6.8
Strength to Weight: Bending, points 45 to 50
9.0
Thermal Diffusivity, mm2/s 54
110
Thermal Shock Resistance, points 21 to 25
7.8

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Bismuth (Bi), % 0
0 to 0.00050
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
99.9 to 99.995
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0.0050 to 0.013
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0