MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. C31600 Bronze

7050 aluminum belongs to the aluminum alloys classification, while C31600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.2 to 12
6.7 to 28
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 280 to 330
170 to 270
Tensile Strength: Ultimate (UTS), MPa 490 to 570
270 to 460
Tensile Strength: Yield (Proof), MPa 390 to 500
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 370
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 630
1040
Melting Onset (Solidus), °C 490
1010
Specific Heat Capacity, J/kg-K 860
380
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
32
Electrical Conductivity: Equal Weight (Specific), % IACS 100
33

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
28 to 690
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 45 to 51
8.5 to 15
Strength to Weight: Bending, points 45 to 50
11 to 15
Thermal Diffusivity, mm2/s 54
42
Thermal Shock Resistance, points 21 to 25
9.4 to 16

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
87.5 to 90.5
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0.7 to 1.2
Phosphorus (P), % 0
0.040 to 0.1
Silicon (Si), % 0 to 0.12
0
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
5.2 to 10.5
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0
0 to 0.4