MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. C53400 Bronze

7050 aluminum belongs to the aluminum alloys classification, while C53400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is C53400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 490 to 570
330 to 720

Thermal Properties

Latent Heat of Fusion, J/g 370
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 630
1050
Melting Onset (Solidus), °C 490
950
Specific Heat Capacity, J/kg-K 860
380
Thermal Conductivity, W/m-K 140
69
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
15
Electrical Conductivity: Equal Weight (Specific), % IACS 100
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1120
350

Common Calculations

Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 45 to 51
10 to 22
Strength to Weight: Bending, points 45 to 50
12 to 20
Thermal Diffusivity, mm2/s 54
21
Thermal Shock Resistance, points 21 to 25
12 to 26

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
91.8 to 95.7
Iron (Fe), % 0 to 0.15
0 to 0.1
Lead (Pb), % 0
0.8 to 1.2
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 0.12
0
Tin (Sn), % 0
3.5 to 5.8
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0 to 0.3
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0
0 to 0.5