MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. C83400 Brass

7050 aluminum belongs to the aluminum alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.2 to 12
30
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 490 to 570
240
Tensile Strength: Yield (Proof), MPa 390 to 500
69

Thermal Properties

Latent Heat of Fusion, J/g 370
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 630
1040
Melting Onset (Solidus), °C 490
1020
Specific Heat Capacity, J/kg-K 860
380
Thermal Conductivity, W/m-K 140
190
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
44
Electrical Conductivity: Equal Weight (Specific), % IACS 100
46

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 3.1
8.7
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
55
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 45 to 51
7.7
Strength to Weight: Bending, points 45 to 50
9.9
Thermal Diffusivity, mm2/s 54
57
Thermal Shock Resistance, points 21 to 25
8.4

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
88 to 92
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
8.0 to 12
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0
0 to 0.7