MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. C85900 Brass

7050 aluminum belongs to the aluminum alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 2.2 to 12
30
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 490 to 570
460
Tensile Strength: Yield (Proof), MPa 390 to 500
190

Thermal Properties

Latent Heat of Fusion, J/g 370
170
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 630
830
Melting Onset (Solidus), °C 490
790
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 140
89
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
25
Electrical Conductivity: Equal Weight (Specific), % IACS 100
28

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 45 to 51
16
Strength to Weight: Bending, points 45 to 50
17
Thermal Diffusivity, mm2/s 54
29
Thermal Shock Resistance, points 21 to 25
16

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
58 to 62
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.12
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
31 to 41
Zirconium (Zr), % 0.080 to 0.15
0 to 0.2
Residuals, % 0
0 to 0.7