MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. C96800 Copper

7050 aluminum belongs to the aluminum alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 2.2 to 12
3.4
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 490 to 570
1010
Tensile Strength: Yield (Proof), MPa 390 to 500
860

Thermal Properties

Latent Heat of Fusion, J/g 370
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 630
1120
Melting Onset (Solidus), °C 490
1060
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
33
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 45 to 51
32
Strength to Weight: Bending, points 45 to 50
25
Thermal Diffusivity, mm2/s 54
15
Thermal Shock Resistance, points 21 to 25
35

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.040
0
Copper (Cu), % 2.0 to 2.6
87.1 to 90.5
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.12
0
Sulfur (S), % 0
0 to 0.0025
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0 to 1.0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0
0 to 0.5