MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. N08031 Stainless Steel

7050 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.2 to 12
45
Fatigue Strength, MPa 130 to 210
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 280 to 330
510
Tensile Strength: Ultimate (UTS), MPa 490 to 570
730
Tensile Strength: Yield (Proof), MPa 390 to 500
310

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 490
1390
Specific Heat Capacity, J/kg-K 860
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.2
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1120
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 45 to 51
25
Strength to Weight: Bending, points 45 to 50
22
Thermal Diffusivity, mm2/s 54
3.1
Thermal Shock Resistance, points 21 to 25
14

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.040
26 to 28
Copper (Cu), % 2.0 to 2.6
1.0 to 1.4
Iron (Fe), % 0 to 0.15
29 to 36.9
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0