MakeItFrom.com
Menu (ESC)

7050 Aluminum vs. R30006 Cobalt

7050 aluminum belongs to the aluminum alloys classification, while R30006 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7050 aluminum and the bottom bar is R30006 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 2.2 to 12
1.0
Fatigue Strength, MPa 130 to 210
260
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 490 to 570
900
Tensile Strength: Yield (Proof), MPa 390 to 500
540

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 490
1290
Specific Heat Capacity, J/kg-K 860
450
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.7

Otherwise Unclassified Properties

Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1120
500

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 55
7.8
Resilience: Unit (Modulus of Resilience), kJ/m3 1110 to 1760
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 45 to 51
29
Strength to Weight: Bending, points 45 to 50
24
Thermal Diffusivity, mm2/s 54
3.9
Thermal Shock Resistance, points 21 to 25
26

Alloy Composition

Aluminum (Al), % 87.3 to 92.1
0
Carbon (C), % 0
0.9 to 1.4
Chromium (Cr), % 0 to 0.040
27 to 32
Cobalt (Co), % 0
48.6 to 68.1
Copper (Cu), % 2.0 to 2.6
0
Iron (Fe), % 0 to 0.15
0 to 3.0
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 3.0
Silicon (Si), % 0 to 0.12
0 to 2.0
Titanium (Ti), % 0 to 0.060
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.080 to 0.15
0
Residuals, % 0 to 0.15
0