MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. 2011 Aluminum

Both 7075 aluminum and 2011 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is 2011 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 1.8 to 12
8.5 to 18
Fatigue Strength, MPa 110 to 190
74 to 120
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 150 to 340
190 to 250
Tensile Strength: Ultimate (UTS), MPa 240 to 590
310 to 420
Tensile Strength: Yield (Proof), MPa 120 to 510
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 380
390
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 480
540
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 130
140 to 170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35 to 45
Electrical Conductivity: Equal Weight (Specific), % IACS 98
100 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.1
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
29 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
140 to 680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
44
Strength to Weight: Axial, points 22 to 54
27 to 37
Strength to Weight: Bending, points 28 to 52
32 to 40
Thermal Diffusivity, mm2/s 50
51 to 64
Thermal Shock Resistance, points 10 to 25
14 to 19

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
91.3 to 94.6
Bismuth (Bi), % 0
0.2 to 0.6
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
5.0 to 6.0
Iron (Fe), % 0 to 0.5
0 to 0.7
Lead (Pb), % 0
0.2 to 0.6
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0
Silicon (Si), % 0 to 0.4
0 to 0.4
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0 to 0.3
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15

Comparable Variants