MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. 356.0 Aluminum

Both 7075 aluminum and 356.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.8 to 12
2.0 to 3.8
Fatigue Strength, MPa 110 to 190
55 to 75
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 150 to 340
140 to 190
Tensile Strength: Ultimate (UTS), MPa 240 to 590
160 to 240
Tensile Strength: Yield (Proof), MPa 120 to 510
100 to 190

Thermal Properties

Latent Heat of Fusion, J/g 380
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 480
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
150 to 170
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 98
140 to 150

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Calomel Potential, mV -750
-730
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
3.2 to 8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
70 to 250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 22 to 54
17 to 26
Strength to Weight: Bending, points 28 to 52
25 to 33
Thermal Diffusivity, mm2/s 50
64 to 71
Thermal Shock Resistance, points 10 to 25
7.6 to 11

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
90.1 to 93.3
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
0 to 0.25
Iron (Fe), % 0 to 0.5
0 to 0.6
Magnesium (Mg), % 2.1 to 2.9
0.2 to 0.45
Manganese (Mn), % 0 to 0.3
0 to 0.35
Silicon (Si), % 0 to 0.4
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 5.1 to 6.1
0 to 0.35
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15

Comparable Variants