MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. ACI-ASTM CN7MS Steel

7075 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.8 to 12
39
Fatigue Strength, MPa 110 to 190
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 240 to 590
540
Tensile Strength: Yield (Proof), MPa 120 to 510
230

Thermal Properties

Latent Heat of Fusion, J/g 380
340
Maximum Temperature: Mechanical, °C 200
1040
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 480
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 22 to 54
19
Strength to Weight: Bending, points 28 to 52
19
Thermal Diffusivity, mm2/s 50
3.2
Thermal Shock Resistance, points 10 to 25
13

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.18 to 0.28
18 to 20
Copper (Cu), % 1.2 to 2.0
1.5 to 2.0
Iron (Fe), % 0 to 0.5
45.4 to 53.5
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0