MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. AISI 431 Stainless Steel

7075 aluminum belongs to the aluminum alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.8 to 12
15 to 17
Fatigue Strength, MPa 110 to 190
430 to 610
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 150 to 340
550 to 840
Tensile Strength: Ultimate (UTS), MPa 240 to 590
890 to 1380
Tensile Strength: Yield (Proof), MPa 120 to 510
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
850
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 480
1450
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1120
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
1270 to 2770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 22 to 54
32 to 50
Strength to Weight: Bending, points 28 to 52
27 to 36
Thermal Diffusivity, mm2/s 50
7.0
Thermal Shock Resistance, points 10 to 25
28 to 43

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.18 to 0.28
15 to 17
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.5
78.2 to 83.8
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0