MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. AWS E310H

7075 aluminum belongs to the aluminum alloys classification, while AWS E310H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is AWS E310H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.8 to 12
11
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 240 to 590
690

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 480
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.6
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1120
200

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 22 to 54
25
Strength to Weight: Bending, points 28 to 52
22
Thermal Diffusivity, mm2/s 50
3.8
Thermal Shock Resistance, points 10 to 25
17

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0.18 to 0.28
25 to 28
Copper (Cu), % 1.2 to 2.0
0 to 0.75
Iron (Fe), % 0 to 0.5
44.2 to 53.7
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
20 to 22.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0