MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. B443.0 Aluminum

Both 7075 aluminum and B443.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is B443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.8 to 12
4.9
Fatigue Strength, MPa 110 to 190
55
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 150 to 340
110
Tensile Strength: Ultimate (UTS), MPa 240 to 590
150
Tensile Strength: Yield (Proof), MPa 120 to 510
50

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 480
600
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
38
Electrical Conductivity: Equal Weight (Specific), % IACS 98
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
18
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
52
Strength to Weight: Axial, points 22 to 54
15
Strength to Weight: Bending, points 28 to 52
23
Thermal Diffusivity, mm2/s 50
61
Thermal Shock Resistance, points 10 to 25
6.8

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
91.9 to 95.5
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
0 to 0.15
Iron (Fe), % 0 to 0.5
0 to 0.8
Magnesium (Mg), % 2.1 to 2.9
0 to 0.050
Manganese (Mn), % 0 to 0.3
0 to 0.35
Silicon (Si), % 0 to 0.4
4.5 to 6.0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 5.1 to 6.1
0 to 0.35
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15