MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. EN AC-41000 Aluminum

Both 7075 aluminum and EN AC-41000 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 1.8 to 12
4.5
Fatigue Strength, MPa 110 to 190
58 to 71
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 240 to 590
170 to 280
Tensile Strength: Yield (Proof), MPa 120 to 510
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 380
420
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 480
630
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
38
Electrical Conductivity: Equal Weight (Specific), % IACS 98
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 22 to 54
18 to 29
Strength to Weight: Bending, points 28 to 52
26 to 35
Thermal Diffusivity, mm2/s 50
69
Thermal Shock Resistance, points 10 to 25
7.8 to 13

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
95.2 to 97.6
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.1 to 2.9
0.45 to 0.65
Manganese (Mn), % 0 to 0.3
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.4
1.6 to 2.4
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.050 to 0.2
Zinc (Zn), % 5.1 to 6.1
0 to 0.1
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15

Comparable Variants