MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. C70400 Copper-nickel

7075 aluminum belongs to the aluminum alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 240 to 590
300 to 310
Tensile Strength: Yield (Proof), MPa 120 to 510
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 480
1060
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130
64
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
14
Electrical Conductivity: Equal Weight (Specific), % IACS 98
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1120
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 22 to 54
9.3 to 9.8
Strength to Weight: Bending, points 28 to 52
11 to 12
Thermal Diffusivity, mm2/s 50
18
Thermal Shock Resistance, points 10 to 25
10 to 11

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
0
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
89.8 to 93.6
Iron (Fe), % 0 to 0.5
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.1 to 6.1
0 to 1.0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.5