MakeItFrom.com
Menu (ESC)

7075 Aluminum vs. N06060 Nickel

7075 aluminum belongs to the aluminum alloys classification, while N06060 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7075 aluminum and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.8 to 12
45
Fatigue Strength, MPa 110 to 190
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
82
Shear Strength, MPa 150 to 340
490
Tensile Strength: Ultimate (UTS), MPa 240 to 590
700
Tensile Strength: Yield (Proof), MPa 120 to 510
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 480
1450
Specific Heat Capacity, J/kg-K 870
430
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 44
250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 1870
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 22 to 54
22
Strength to Weight: Bending, points 28 to 52
20
Thermal Shock Resistance, points 10 to 25
19

Alloy Composition

Aluminum (Al), % 86.9 to 91.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
19 to 22
Copper (Cu), % 1.2 to 2.0
0.25 to 1.3
Iron (Fe), % 0 to 0.5
0 to 14
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 5.1 to 6.1
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0